The basic properties of Bloch functions
نویسندگان
چکیده
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولBasic Properties of Periodic Functions
We use the following convention: x, t, t1, t2, r, a, b are real numbers and F , G are partial functions from R to R. Let F be a partial function from R to R and let t be a real number. We say that t is a period of F if and only if: (Def. 1) t 6= 0 and for every x holds x ∈ domF iff x+t ∈ domF and if x ∈ domF, then F (x) = F (x+ t). Let F be a partial function from R to R. We say that F is perio...
متن کاملMapping Properties of Basic Hypergeometric Functions
It is known that the ratio of Gaussian hypergeometric functions can be represented by means of g -fractions. In this work, the ratio of q -hypergeometric functions are represented by means of g -fractions that lead to certain results on q -starlikeness of the q -hypergeometric functions defined on the open unit disk. Corresponding results for the q -convex case are also obtained.
متن کاملBasic Properties of Even and Odd Functions
In this paper x, r are real numbers. Let A be a set. We say that A is symmetrical if and only if: (Def. 1) For every complex number x such that x ∈ A holds −x ∈ A. Let us note that there exists a subset of C which is symmetrical. Let us observe that there exists a subset of R which is symmetrical. In the sequel A denotes a symmetrical subset of C. Let R be a binary relation. We say that R has s...
متن کاملDefinitions and Basic Properties of Measurable Functions
In this article we introduce some definitions concerning measurable functions and prove related properties. In this paper k is a natural number, r is a real number, i is an integer, and q is a rational number. The subset Z − of R is defined by: (Def. 1) r ∈ Z − iff there exists k such that r = −k. Let us note that Z − is non empty. The following three propositions are true: (1) N ≈ Z −. Z is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1979
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171279000314